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SUMMARY
Current two-photon scanning microscopy techniques for brain imaging often face challenges in balancing image resolution, acquisition speed, and signal-to-noise
ratio (SNR). These challenges become particularly pronounced during volumetric imaging due to the light-scattering properties of brain tissue.

Light Beads Microscopy (LBM) offers a solution by optimizing spatiotemporal signal acquisition to record data at rates limited by the fluorescence lifetime of neural
calcium indicators, such as GCaMP. LBM leverages high-energy femtosecond laser pulses at a relatively low repetition rate (∼ 4.5 MHz to 5 MHz) to enable the highly
temporally multiplexed acquisition of up to 30 axial planes within the same timeframe required for traditional two-photon microscopy to capture a single plane.
Additionally, LBM enhances SNR by utilizing one excitation pulse per voxel.

In recent studies, LBM, used in conjunction with a mesoscope [1], has demonstrated the ability to record the calcium dynamics of approximately one million neurons
at 2 Hz within a volume of approximately 5.1× 6× 0.5 mm in the mouse brain cortex. This breakthrough promises new avenues for exploration in mammalian brain
research.

Here, we describe a new system that optimizes and streamlines the LBM implementation by improving its stability, while reducing its footprint and alignment
complexity. We also demonstrate integrating LBM into a standard open-source two-photon scanning microscope. This effort aims to broaden accessibility to LBM
technology within the neuroscience community, facilitating further innovation and discovery in the field.
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Figure 1: Axial Beam Multiplexing.

VCAM MODULE

Coupling Light Beads to a DIY Microscope

Figure 2: vCAm Multiplexing Module Coupled to a Microscope.

OPTICAL LAYOUT

Optical Setup
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Figure 3: vCAm Multiplexing Module Block Diagram.

SIGNAL PROCESSING

Signal Demultiplexing
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Figure 4: PMT Signal Demultiplexing.

PROOF OF CONCEPT

Light Beads Imaging in a SLAP2 Microscope
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Figure 5: Simultaneous imaging of 30 planes.

LIVE BRAIN IMAGING

Light Beads Imaging in a 2p-RAM Mesoscope

4.24 mm

4.24 mm

480 µm

Voxel size: 5 x 5 x 16 µm

Figure 6: Mouse Dorsal Cortex (Left and Right Hemispheres) [1, 2].
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