

Light BeadsMicroscopy: Rapid Volumetric Brain Imaging by Spatiotemporal Axial BeamMultiplexing

Pedro Felipe Gardeazábal Rodríguez¹, Jeffrey Demas^{2,3}, Ryan Gibiser¹, Nelson Downs¹, Jonathan King¹, Georg Jaindl¹, Alipasha Vaziri³, Jack R. Glaser¹

 1 MBF Bioscience, Williston, VT & Ashburn, VA 2 Department of Electrical and Computer Engineering, Boston University, Boston, MA 3 Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY

Current two-photon scanning microscopy techniques for brain imaging often face challenges in balancing image resolution, acquisition speed, and signal-to-noise ratio (SNR). These challenges become particularly pronounced during volumetric imaging due to the light-scattering properties of brain tissue.

SUMMARY

Light Beads Microscopy (LBM) offers a solution by optimizing spatiotemporal signal acquisition to record data at rates limited by the fluorescence lifetime of neural calcium indicators, such as GCaMP. LBM leverages high-energy femtosecond laser pulses at a relatively low repetition rate (∼ 4.5 MHz to 5 MHz) to enable the highly temporally multiplexed acquisition of up to 30 axial planes within the same timeframe required for traditional two-photon microscopy to capture a single plane. Additionally, LBM enhances SNR by utilizing one excitation pulse per voxel.

In recent studies, LBM, used in conjunction with a mesoscope [1], has demonstrated the ability to record the calcium dynamics of approximately one million neurons \vert at 2 Hz within a volume of approximately $5.1 \times 6 \times 0.5$ mm in the mouse brain cortex. This breakthrough promises new avenues for exploration in mammalian brain research.

Here, we describe a new system that optimizes and streamlines the LBM implementation by improving its stability, while reducing its footprint and alignment complexity. We also demonstrate integrating LBM into a standard open-source two-photon scanning microscope. This effort aims to broaden accessibility to LBM technology within the neuroscience community, facilitating further innovation and discovery in the field.

¹J. Demas, J. Manley, F. Tejera, K. Barber, H. Kim, F. M. Traub, B. Chen, and A. Vaziri, "High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy", Nature Methods **18**, 1103–1111 (2021). ²J. Manley, S. Lu, K. Barber, J. Demas, H. Kim, D. Meyer, F. M. Traub, and A. Vaziri, "Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number.", eng, Neuron **112**, 1694–1709.e5 (2024). 3 A. Bellafard, G. Namvar, J. C. Kao, A. Vaziri, and P. Golshani, "Volatile working memory representations crystallize with practice", Nature **629**, 1109–1117 (2024).

**图次通报程
輕減要求:Web** https://www.mbfbioscience.com/products/lightbeads-microscopy

PROOF OF CONCEPT

Light Beads Imaging in a SLAP2 Microscope

Figure 5: Simultaneous imaging of 30 planes.

LIVE BRAIN IMAGING

Figure 6: Mouse Dorsal Cortex (Left and Right Hemispheres) [1, 2].

REFERENCES

ACKNOWLEDGMENT

Research reported in this poster was supported by the National Institute of Mental Health of the National Institutes of Health under award number R44MH132234.

CONTACT INFORMATION

Email pedro@mbfbioscience.com