

Light Beads Microscopy: Rapid Volumetric Brain Imaging by Spatiotemporal Axial Beam Multiplexing

Pedro Felipe Gardeazábal Rodríguez¹, Jeffrey Demas^{2,3}, Ryan Gibiser¹, Nelson Downs¹, Jonathan King¹, Georg Jaindl¹, Alipasha Vaziri³, Jack R. Glaser¹

¹MBF Bioscience, Williston, VT & Ashburn, VA ² Department of Electrical and Computer Engineering, Boston University, Boston, MA ³ Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY

SUMMARY

Current two-photon scanning microscopy techniques for brain imaging often face challenges in balancing image resolution, acquisition speed, and signal-to-noise ratio (SNR). These challenges become particularly pronounced during volumetric imaging due to the light-scattering properties of brain tissue.

Light Beads Microscopy (LBM) offers a solution by optimizing spatiotemporal signal acquisition to record data at rates limited by the fluorescence lifetime of neural calcium indicators, such as GCaMP. LBM leverages high-energy femtosecond laser pulses at a relatively low repetition rate (~ 4.5 MHz to 5 MHz) to enable the highly temporally multiplexed acquisition of up to 30 axial planes within the same timeframe required for traditional two-photon microscopy to capture a single plane. Additionally, LBM enhances SNR by utilizing one excitation pulse per voxel.

In recent studies, LBM, used in conjunction with a mesoscope [1], has demonstrated the ability to record the calcium dynamics of approximately one million neurons at 2 Hz within a volume of approximately $5.1 \times 6 \times 0.5$ mm in the mouse brain cortex. This breakthrough promises new avenues for exploration in mammalian brain research.

Here, we describe a new system that optimizes and streamlines the LBM implementation by improving its stability, while reducing its footprint and alignment complexity. We also demonstrate integrating LBM into a standard open-source two-photon scanning microscope. This effort aims to broaden accessibility to LBM technology within the neuroscience community, facilitating further innovation and discovery in the field.

REFERENCES

¹J. Demas, J. Manley, F. Tejera, K. Barber, H. Kim, F. M. Traub, B. Chen, and A. Vaziri, "High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy", Nature Methods 18, 1103–1111 (2021). ²J. Manley, S. Lu, K. Barber, J. Demas, H. Kim, D. Meyer, F. M. Traub, and A. Vaziri, "Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number.", eng, Neuron 112, 1694–1709.e5 (2024). ³A. Bellafard, G. Namvar, J. C. Kao, A. Vaziri, and P. Golshani, "Volatile working memory representations crystallize with practice", Nature 629, 1109–1117 (2024).

Figure 1: Axial Beam Multiplexing.

PROOF OF CONCEPT

Light Beads Imaging in a SLAP2 Microscope

Figure 5: Simultaneous imaging of 30 planes.

ACKNOWLEDGMENT

Research reported in this poster was supported by the National Institute of Mental Health of the National Institutes of Health under award number R44MH132234.

LIVE BRAIN IMAGING

Figure 6: Mouse Dorsal Cortex (Left and Right Hemispheres) [1, 2].

CONTACT INFORMATION

Web https://www.mbfbioscience.com/products/light-