An article in the journal, The Scientist Magazine, pointed out that “Monitoring the worms’ neural activity while they roam freely to hunt food and seek mates is key, and fortunately, C. elegans are small and slow enough that microscopes can be built to track them as they move around.” [27].
Today, there are more than 1,100 laboratories worldwide that use C. elegans as a model organism [28].
When performed manually, worm tracking is not only very labor-intensive [29], but particularly prone to bias introduced by observer dependence [30]. For example, this has prevented manual quantitative analysis of locomotion of freely moving worms from being incorporated in medium-throughput toxicology assays [31]. To overcome this problem, several software or combined software/hardware products were developed with the aim to automatically detect and track freely moving worms with video microscopy systems.