Additional Subject Matter

MBF Bioscience >  Blog > Additional Subject Matter (Page 12)

Revving engines, blasting sirens, the drummer next door. Despite the myriad sensory stimuli going on around us at any given moment, humans have the ability to stay focused on the task at hand. This skill is due to a part of the brain known as the neocortex, a six-layer structure whose intricate wiring is largely a mystery. But researchers at the University of Virginia just...

Read More

  Humans invent tools, talk to each other, and philosophize, thanks to a part of the brain known as the neocortex. All mammals have it, allowing them to function on a more sophisticated level than animals like geckos and sea anemones. And then there are birds. Avians don't have a neocortex, yet they display higher level processes in their behavior, a characteristic which led Dr. Harvey...

Read More

  [caption id="attachment_3412" align="aligncenter" width="238"] Original figures published with permission from Dr. Ed Glaser[/caption]   In 1963, Dr. Ed Glaser (co-founder of MBF Bioscience) and Dr. Hendrik van der Loos were at the John Hopkins Medical School putting the final touches on the first computer microscope, an analog computer connected to a light microscope. It was described as a system for attaching X-Y-Z transducers to a microscope stage,...

Read More

Imagine if you could switch your depression off like a light. Researchers did it in mice. They used optogenetics to gain more insight into how brain circuits work in cases of depression, and discovered that different types of stress trigger different activity patterns in the same brain circuit.   Two papers published recently in the journal Nature describe how neuronal activity in specific brain circuits in mice...

Read More

Thirty-six high school students passionate about neuroscience will be competing at the 4th annual Vermont Brain Bee on February 9th, 2013 at the University of Vermont College of Medicine. Participants will be asked questions about a wide variety of topics: anatomy and development, learning and memory, stress, types of research, neurogenerative disorders, etc. They will also get the opportunity to engage in neuroscience activities and...

Read More

  If a head gets hit hard enough, the trauma occurs instantly. Neurons die, the brain swells as microglia cells rush to the damaged area, and the protective armor known as the blood brain barrier might even rupture. But it doesn't end there. Long term effects include cognitive impairment, loss of sensory processing, and susceptibility to neurodegenerative diseases like Alzheimer's.   Researchers at the University of South Florida say...

Read More

No two neurons are exactly alike. Structure dictates function, so for scientists to fully understand the way different types of neurons work, they must first get to know their forms.   Scientists at the Institute for Neuroscience and Medicine at the Research Center Jülich in Jülich, Germany use Neurolucida to perform neuron reconstruction, the most effective method for studying neuron morphology.   In their paper “Improved biocytin labeling and...

Read More

Neurotrophic factors may be the key to the cure for Parkinson’s, Huntington's, Alzheimer's, and other neurodegenerative disorders. Scientists have known this for over twenty years. But the question continues to loom – how does one safely and effectively deliver the neurotrophic factors to the damaged neurons? Dr. Raymond Bartus and his team at Ceregene, a biotechnology company in San Diego, have developed an innovative approach...

Read More

  Some children raised in orphanages grow up to develop social disorders, and there's not all that much modern medicine can do about it. But scientists at Harvard Medical School are working on gaining a better understanding of how early isolation affects a developing brain. Their research gives new insight into the mechanisms at play, and indicates that timing and healthy myelination are crucial.   “Social isolation from...

Read More

  A baby cries and her mother's maternal instincts kick in. She picks her baby up, rocks her, feeds her. Changes in a new mother's brain compel her to act in ways that ensure her baby's survival. Researchers at the Hebrew University of Jerusalem are working on learning more about those changes. Their recent focus is on the olfactory bulb – a region of the brain...

Read More