Jamal, W. (2024). Advances in our understanding of locomotory behavioural response of Teratorhabditis palmarum nematode. Biologia, 79(11), 3305–3313. https://doi.org/10.1007/s11756-024-01780-9
Jee, C., & Batsaikhan, E. (2024). JNK signaling positively regulates acute ethanol tolerance in C. elegans. International Journal of Molecular Sciences, 25(12), 6398.
Lee, D. J., Eor, J. Y., Kwak, M.-J., Lee, J., Kang, A. N., Mun, D., Choi, H., Kang, M.-G., Choi, Y., & Seo, H. (2024). Enhanced longevity and immunity in Caenorhabditis elegans through ingestion of Lactiplantibacillus plantarum SKO-001: A multi-omics study. Food Science of Animal Resources. https://www.kosfaj.org/archive/view_article?pid=kosfa-2024-e87
Ornelas, I. M., Carrilho, B. S., Ventura, M. A. V. C., Domith, I., Silveira, C. M. V., Dos Santos, V. F., Delou, J. M., Moll, F., Pereira, H. M. G., & Junqueira, M. (2024). Lysergic acid diethylamide induces behavioral changes in Caenorhabditis elegans. Neuroscience Letters, 837, 137903.
Rodak, N. Y., Tan, C.-H., & Sternberg, P. W. (2024). An improved solid medium-based culturing method for Steinernema hermaphroditum. Micropublication Biology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858997/
Baptista, Fabiane Bicca Obetine, Aline Franzen da Silva, Larissa Marafiga Cordeiro, Larissa Ilha de Souza, Tássia Limana da Silveira, Marcell Valandro Soares, Paula Michelotti, et al. “Biosafety Assessment of Novel Organoselenium Zidovudine Derivatives in the Caenorhabditis Elegans Model.” Toxicology and Applied Pharmacology, August 9, 2024, 117045. https://doi.org/10.1016/j.taap.2024.117045.
Nagaral, K. Shruthi, Pramod S.n, Kisan B, Rajashekhar M, and Rajeshwara Achur and Radhika. “Hypoxia Induced Suspended Animation And Recovery In Caenorhabditis Elegance.” International Neurourology Journal 28, no. 1 (May 13, 2024): 707–16. https://einj.net/index.php/INJ/article/view/495.
Boor, Sonia A, Joshua D Meisel, and Dennis H Kim. “Neuroendocrine Gene Expression Coupling of Interoceptive Bacterial Food Cues to Foraging Behavior of C. Elegans.” Edited by Douglas Portman and Piali Sengupta. eLife 12 (January 17, 2024): RP91120. https://doi.org/10.7554/eLife.91120.
Gu, Yulun, Yongqi Jiang, Xiaoxia Chen, Liangzhong Li, Haibo Chen, Jinyu Chen, Chen Wang, Jun Yu, Chao Chen, and Hui Li. “Generation of Environmentally Persistent Free Radicals on Photoaged Tire Wear Particles and Their Neurotoxic Effects on Neurotransmission in Caenorhabditis Elegans.” Environment International 186 (April 1, 2024): 108640. https://doi.org/10.1016/j.envint.2024.108640.
Han, Marina, Aleen Saxton, Heather Currey, Sarah M. Waldherr, Nicole F. Liachko, and Brian C. Kraemer. “Transgenic Dendra2::Tau Expression Allows in Vivo Monitoring of Tau Proteostasis in Caenorhabditis Elegans.” Disease Models & Mechanisms 17, no. 3 (March 28, 2024): dmm050473. https://doi.org/10.1242/dmm.050473.
Hassinan, Cera W., Scott C. Sterrett, Brennan Summy, Arnav Khera, Angie Wang, and Jihong Bai. “Dimensionality of Locomotor Behaviors in Developing C. Elegans.” PLOS Computational Biology 20, no. 3 (March 4, 2024): e1011906. https://doi.org/10.1371/journal.pcbi.1011906.
Hoolachan, Joseph M, Eve McCallion, Emma R Sutton, Özge Çetin, Paloma Pacheco-Torres, Maria Dimitriadi, Suat Sari, et al. “A Transcriptomics-Based Drug Repositioning Approach to Identify Drugs with Similar Activities for the Treatment of Muscle Pathologies in Spinal Muscular Atrophy (SMA) Models.” Human Molecular Genetics 33, no. 5 (March 1, 2024): 400–425. https://doi.org/10.1093/hmg/ddad192.
Jadhav, Vaishnavi S., Jade G. Stair, Randall J. Eck, Samuel N. Smukowski, Heather N. Currey, Laura Garcia Toscano, Joshua C. Hincks, et al. “Transcriptomic Evaluation of Tau and TDP-43 Synergism Shows Tauopathy Predominance and Reveals Potential Modulating Targets.” Neurobiology of Disease 193 (April 1, 2024): 106441. https://doi.org/10.1016/j.nbd.2024.106441.
Kim, Aaron Taehwan, Sida Li, Yoo Kim, Young-Jai You, and Yeonhwa Park. “Food Preference-Based Screening Method for Identification of Effectors of Substance Use Disorders Using Caenorhabditis Elegans.” Life Sciences 345 (May 15, 2024): 122580. https://doi.org/10.1016/j.lfs.2024.122580.
Lee, Daniel Junpyo, An Na Kang, Junbeom Lee, Min-Jin Kwak, Daye Mun, Daseul Lee, Sangnam Oh, and Younghoon Kim. “Molecular Characterization of Fusarium Venenatum-Based Microbial Protein in Animal Models of Obesity Using Multi-Omics Analysis.” Communications Biology 7, no. 1 (January 26, 2024): 1–14. https://doi.org/10.1038/s42003-024-05791-9.
Li, Hui, Yulun Gu, Yongqi Jiang, Ping Ding, Xiaoxia Chen, Chao Chen, Ruolin Pan, Chongli Shi, Susu Wang, and Haibo Chen. “Environmentally Persistent Free Radicals on Photoaged Nanopolystyrene Induce Neurotoxicity by Affecting Dopamine, Glutamate, Serotonin and GABA in Caenorhabditis Elegans.” Science of The Total Environment 906 (January 1, 2024): 167684. https://doi.org/10.1016/j.scitotenv.2023.167684.
Luo, Jingrui, Xiaoying Zhang, Ziqing Liang, Yun Chen, Guo Liu, Yong Cao, Hang Xiao, and Yunjiao Chen. “Pentagalloyl Glucose Regulated Probiotic and Metabolite SCFAs To Ameliorate Intestinal Barrier Integrity.” SSRN Scholarly Paper. Rochester, NY, January 18, 2024. https://doi.org/10.2139/ssrn.4696497.
Napier-Jameson, Rebekah, Olivia Marx, and Adam Norris. “A Pair of RNA Binding Proteins Inhibit Ion Transporter Expression to Maintain Lifespan.” Genetics 226, no. 2 (February 1, 2024): iyad212. https://doi.org/10.1093/genetics/iyad212.
Navarro-Hortal, María D., Jose M. Romero-Márquez, M. Asunción López-Bascón, Cristina Sánchez-González, Jianbo Xiao, Sandra Sumalla-Cano, Maurizio Battino, Tamara Y. Forbes-Hernández, and José L. Quiles. “In Vitro and In Vivo Insights into a Broccoli Byproduct as a Healthy Ingredient for the Management of Alzheimer’s Disease and Aging through Redox Biology.” Journal of Agricultural and Food Chemistry 72, no. 10 (March 13, 2024): 5197–5211. https://doi.org/10.1021/acs.jafc.3c05609.
Robertson, Helen E., Arnau Sebé-Pedrós, Baptiste Saudemont, Yann Loe-Mie, Anne-C. Zakrzewski, Xavier Grau-Bové, Marie-Pierre Mailhe, Philipp Schiffer, Maximilian J. Telford, and Heather Marlow. “Single Cell Atlas of Xenoturbella Bocki Highlights Limited Cell-Type Complexity.” Nature Communications 15, no. 1 (March 19, 2024): 2469. https://doi.org/10.1038/s41467-024-45956-y.
Rodak, Nathan Y., Chieh-Hsiang Tan, and Paul W. Sternberg. “An Improved Solid Medium-Based Culturing Method for Steinernema Hermaphroditum.” microPublication Biology 2024: 10.17912/micropub.biology.001110. Accessed April 12, 2024. https://doi.org/10.17912/micropub.biology.001110.
Silva, Larissa Pereira Dantas da, Erika da Cruz Guedes, Isabel Cristina Oliveira Fernandes, Lucas Aleixo Leal Pedroza, Gustavo José da Silva Pereira, and Priscila Gubert. “Exploring Caenorhabditis Elegans as Parkinson’s Disease Model: Neurotoxins and Genetic Implications.” Neurotoxicity Research 42, no. 1 (February 6, 2024): 11. https://doi.org/10.1007/s12640-024-00686-3.
Wang, Ruipeng, Jingxuan Guo, Hanlu Yao, Xuekai Luo, Yixiang Deng, Yuhang Tian, Yan Zhang, and Shangbang Gao. “Protocol for Near-Infrared Optogenetics Manipulation of Neurons and Motor Behavior in C. Elegans Using Emissive Upconversion Nanoparticles.” STAR Protocols 5, no. 1 (March 15, 2024): 102858. https://doi.org/10.1016/j.xpro.2024.102858.
Possik, E., L.-L. Klein, et al. (2023). "Glycerol 3-phosphate phosphatase/PGPH-2 counters metabolic stress and promotes healthy aging via a glycogen sensing-AMPK-HLH-30-autophagy axis in C. elegans." Nature Communications 14(1): 5214. https://doi.org/10.1038/s41467-023-40857-y
Boeglin, M., E. Leyva-Díaz, et al. (2023). "Expression and function of C. elegans UNCP-18, a paralogue of the SM protein UNC-18." Genetics. https://doi.org/10.1093/genetics/iyad180
Lin, Y., C. Lin, et al. (2023). "Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions." Biomedicine & Pharmacotherapy 167: 115594. https://doi.org/10.1016/j.biopha.2023.115594
Ramos, C. M. and S. P. Curran (2023). "Comparative analysis of the molecular and physiological consequences of constitutive SKN-1 activation." GeroScience. https://doi.org/10.1007/s11357-023-00937-9
Stuhr, N. L. and S. P. Curran (2023). Different methods of killing bacteria diets differentially influence Caenorhabditis elegans physiology, microPublication Biology. https://www.micropublication.org/journals/biology/micropub-biology-000902
Pang, Y., M. Li, et al. (2023). "Preliminary study on the E-liquid and aerosol on the neurobehavior of C. elegans." Environment International: 108180. https://doi.org/10.1016/j.envint.2023.108180
Wang, W., T. Sherry, et al. (2023). "An intestinal sphingolipid confers intergenerational neuroprotection." Nature Cell Biology 25(8): 1196-1207. https://doi.org/10.1038/s41556-023-01195-9
Dai, C.-Y., C. C. Ng, et al. (2023). "ATFS-1 counteracts mitochondrial DNA damage by promoting repair over transcription." Nature Cell Biology. https://doi.org/10.1038/s41556-023-01192-y
Chen, Y., L. Xu, et al. (2023). "Four novel sleep-promoting peptides were screened and identified from bovine casein hydrolysates using patch-clamp model in vitro and Caenorhabditis elegans in vivo." Food & Function. https://doi.org/10.1039/D3FO01246H
Cordeiro, L. M., M. V. Soares, et al. (2023). "Toxicity of Copper and Zinc alone and in combination in Caenorhabditis elegans model of Huntington's disease and protective effects of rutin." NeuroToxicology. https://doi.org/10.1016/j.neuro.2023.06.005
Hopkins, C. E., K. McCormick, et al. (2023). "Clinical Variants in C. elegans Expressing Human STXBP1 Reveals a Novel Class of Pathogenic Variants and Classifies Variants of Uncertain Significance." Genetics in Medicine Open: 100823. https://doi.org/10.1016/j.gimo.2023.100823
Chandra, R., F. Farah, et al. "Sleep is required to consolidate odor memory and remodel olfactory synapses." Cell. https://doi.org/10.1016/j.cell.2023.05.006
Jiang, Y., M. Huang, et al. (2023). "Full-Length Transcriptome Analysis of Soybean Cyst Nematode (Heterodera glycines) Reveals an Association of Behaviors in Response to Attractive pH and Salt Solutions with Activation of Transmembrane Receptors, Ion Channels, and Ca2+ Transporters." Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.3c00908
Jesudoss Chelladurai, J. R. J., K. A. Martin, et al. (2023). "Repertoire of P-glycoprotein drug transporters in the zoonotic nematode Toxocara canis." Scientific Reports 13(1): 4971. https://doi.org/10.1038/s41598-023-31556-1
Zhang, L., L. Li, et al. "The C2 and PH domains of CAPS constitute an effective PI(4,5)P2-binding unit essential for Ca2+-regulated exocytosis." Structure. https://doi.org/10.1016/j.str.2023.02.004
Moreira, P., P. Papatheodorou, et al. (2023). "Nuclear Factor-Y is a Pervasive Regulator of Neuronal Gene Expression." bioRxiv: 2023.2002.2014.528575. https://doi.org/10.1101/2023.02.14.528575
Pandey, T., B. Wang, et al. (2023). "Insulin-mTOR hyperfunction drives C. elegans aging opposed by the megaprotein LPD-3." bioRxiv: 2023.2002.2014.528431. https://doi.org/10.1101/2023.02.14.528431
Yuan, Y., K. Xin, et al. (2023). "A GNN-based model for capturing spatio-temporal changes in locomotion behaviors of aging C. elegans." Computers in Biology and Medicine 155: 106694. https://doi.org/10.1016/j.compbiomed.2023.106694
Romero-Márquez, J. M., M. D. Navarro-Hortal, et al. (2023). "In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado (Persea americana Mill.) Honey from Southern Spain." Antioxidants 12(2): 404. https://doi.org/10.3390/antiox12020404
Urso, S. J., A. Sathaseevan, et al. (2023). "Regulation of the hypertonic stress response by the 3’ mRNA cleavage and polyadenylation complex." bioRxiv: 2023.2001.2023.525244. https://doi.org/10.1101/2023.01.23.525244
Kropp, P. A., P. Rogers, et al. (2023). "Patient-specific variants of NFU1/NFU-1 cause aberrant cholinergic signaling in a Caenorhabditis elegans model of MMDS1." Dis Model Mech 16(049594): 049594. DOI: 10.1242/dmm.049594
Lanier, V. J., A. M. White, et al. (2023). "Theory and practice of using cell strainers to sort <em>Caenorhabditis elegans</em> by size." bioRxiv: 2023.2001.2007.523116. https://doi.org/10.1101/2023.01.07.523116
Zhao, K., Y. Zhang, et al. (2023). "The joint effects of nanoplastics and TBBPA on neurodevelopmental toxicity in Caenorhabditis elegans." Toxicology Research: tfac086. https://doi.org/10.1093/toxres/tfac086
Aquino Nunez, W., B. Combs, et al. (2022). "Age-dependent accumulation of tau aggregation in Caenorhabditis elegans." Frontiers in Aging 3. https://doi.org/10.3389/fragi.2022.928574
Latimer, C. S., J. G. Stair, et al. (2022). "TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans." Disease Models & Mechanisms 15(4). https://doi.org/10.1242/dmm.049323
Gildea, H. K., P. A. Frankino, et al. (2022). "Glia of <i>C. elegans</i> coordinate a protective organismal heat shock response independent of the neuronal thermosensory circuit." Science Advances 8(49): eabq3970. DOI: 10.1126/sciadv.abq3970
Liao, C.-P., Y.-C. Chiang, et al. (2022). "Neurophysiological basis of stress-induced aversive memory in the nematode Caenorhabditis elegans." Current Biology. https://doi.org/10.1016/j.cub.2022.11.012
Liudkovska, V., P. S. Krawczyk, et al. (2022). “TENT5 cytoplasmic noncanonical poly(A) polymerases regulate the innate immune response in animals.” Science Advances 8(46): eadd9468. DOI: 10.1126/sciadv.add9468
Wang, C., B. Wang, et al. (2022). "A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience." Nature Communications 13(1): 6805. https://doi.org/10.1038/s41467-022-34450-y
Li, L., H. Liu, et al. (2022). "CASK and FARP localize two classes of post-synaptic ACh receptors thereby promoting cholinergic transmission." PLOS Genetics 18(10): e1010211. https://doi.org/10.1371/journal.pgen.1010211
Navarro-Hortal, M. D., J. M. Romero-Márquez, et al. (2022). "Amyloid β-but not Tau-induced neurotoxicity is suppressed by Manuka honey via HSP-16.2 and SKN-1/Nrf2 pathways in an in vivo model of Alzheimer's disease." Food & Function. DOI https://doi.org/10.1039/D2FO01739C
AlOkda, A. and J. M. Van Raamsdonk (2022). Effect of DMSO on lifespan and physiology in C. elegans: Implications for use of DMSO as a solvent for compound delivery, microPublication Biology. 10.17912/micropub.biology.000634.
Mattison, K. A., G. Tossing, et al. (2022). "ATP6V0C variants impair vacuolar V-ATPase causing a neurodevelopmental disorder often associated with epilepsy." Brain: awac330. https://doi.org/10.1093/brain/awac330
da Silva, A. F., L. M. Cordeiro, et al. (2022). "JM-20 affects GABA neurotransmission in Caenorhabditis elegans." NeuroToxicology. https://doi.org/10.1016/j.neuro.2022.08.012
da Silva, T. C., T. L. da Silveira, et al. (2022). "Exogenous Adenosine Modulates Behaviors and Stress Response in Caenorhabditis elegans." Neurochemical Research. https://doi.org/10.1007/s11064-022-03727-5
Chen, Y., Q. Qin, et al. (2022). "Carnosol Reduced Pathogenic Protein Aggregation and Cognitive Impairment in Neurodegenerative Diseases Models via Improving Proteostasis and Ameliorating Mitochondrial Disorders." Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.2c02665
Wang, C., L. Zeng, et al. (2022). "Decabromodiphenyl ethane induces locomotion neurotoxicity and potential Alzheimer’s disease risks through intensifying amyloid-beta deposition by inhibiting transthyretin/transthyretin-like proteins." Environment International 168: 107482. https://doi.org/10.1016/j.envint.2022.107482
Raj, V. and A. Thekkuveettil (2022). "Dopamine plays a critical role in the olfactory adaptive learning pathway in Caenorhabditis elegans." Journal of Neuroscience Research n/a(n/a). https://doi.org/10.1002/jnr.25112
Ahmad, W. (2022). "Glucose enrichment impair neurotransmission and induce Aβ oligomerization that can not be reversed by manipulating O-β-GlcNAcylation in the C. elegans model of Alzheimer's disease." The Journal of Nutritional Biochemistry: 109100. https://read.qxmd.com/journal/30483/12
Tan, C.-H., H. Park, et al. (2022). "Loss of famh-136/ FAM136A results in minor locomotion and behavioral changes in Caenorhabditis elegans." microPublication biology 2022: 10.17912/micropub.biology.000553. https://doi.org/10.17912/micropub.biology.000553
J. Alex Parker, Sarah Duhaime, Constantin Bretonneau et al. Transgenic TDP-43 and endogenous TDP-1 Caenorhabditis elegans ALS models show motor deficits and age-dependent neurodegeneration, 20 April 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1555653/v1]
Toker, I. A. and O. Hobert (2022). "The Cbr-DPY-10(Arg92Cys) modification is a reliable co-conversion marker for CRISPR/Cas9 genome editing in Caenorhabditis briggsae." microPublication Biology: 10.17912/micropub.biology.000554. doi: 10.17912/micropub.biology.000554
Datta, R., A. Robertson, et al. (2022). "High concentrations of the anthelmintic diethylcarbamazine paralyze C. elegans independently of TRP-2." microPublication Biology: 10.17912/micropub.biology.000548. doi: 10.17912/micropub.biology.000548
Zaroubi, L., I. Ozugergin, et al. "The Ubiquitous Soil Terpene Geosmin Acts as a Warning Chemical." Applied and Environmental Microbiology 0(0): e00093-00022. https://doi.org/10.1128/aem.00093-22
Chiang, Y.-C., C.-P. Liao, et al. (2022). "A serotonergic circuit regulates aversive associative learning under mitochondrial stress in C. elegans." Proceedings of the National Academy of Sciences 119(11): e2115533119. https://doi.org/10.1073/pnas.2115533119
Gaeta, A. L., J. B. Nourse, et al. (2022). "Systemic RNA interference-defective (SID) genes modulate dopaminergic neurodegeneration in <em>C. elegans</em>." bioRxiv: 2022.2002.2023.481573. 10.1101/2022.02.23.481573
Hagar, S., S. Yehuda, et al. (2022). Nature Portfolio. 10.21203/rs.3.rs-1345880/v1
Yan, Z., X. Cheng, et al. (2022). "Sexually Dimorphic Neurotransmitter Release at the Neuromuscular Junction in Adult Caenorhabditis elegans." Frontiers in Molecular Neuroscience 14. https://doi.org/10.3389/fnmol.2021.780396
Chou, S.-H., Y.-J. Chen, et al. (2022). "A role for dopamine in C. elegans avoidance behavior induced by mitochondrial stress." Neuroscience Research. https://doi.org/10.1016/j.neures.2022.01.005
Possik, E., C. Schmitt, et al. (2022). "Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans." Nature Communications 13(1): 177. https://doi.org/10.1038/s41467-021-27803-6
Wang, C., Y. Li, et al. (2022). "Tris(1,3-dichloro-2-propyl) phosphate reduces longevity through a specific microRNA-mediated DAF-16/FoxO in an unconventional insulin/insulin-like growth factor‑1 signaling pathway." Journal of Hazardous Materials 425: 128043. https://doi.org/10.1016/j.jhazmat.2021.128043
Raffaele, M., K. Kovacovicova, et al. (2021). "Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects." GeroScience. https://doi.org/10.1007/s11357-021-00487-y
Palumbos, S. D., R. Skelton, et al. (2021). "cAMP controls a trafficking mechanism that maintains the neuron specificity and subcellular placement of electrical synapses." Developmental Cell. https://doi.org/10.1016/j.devcel.2021.10.011
Chai, C. M., W. Chen, et al. (2021). "A conserved behavioral role for a nematode interneuron neuropeptide receptor." Genetics(iyab198). https://doi.org/10.1093/genetics/iyab198
Gaur, A. V. and R. Agarwal (2021). "Risperidone Induced Alterations in Feeding and Locomotion Behavior of Caenorhabditis elegans." Current Research in Toxicology. https://doi.org/10.1016/j.crtox.2021.10.003
Cuentas-Condori, A., B. Mulcahy, et al. "C. elegans neurons have functional dendritic spines." eLife 8: e47918 https://doi.org/10.7554/eLife.47918
C1 - eLife 2019;8:e47918. 10.7554/eLife.47918
Doser, R. L., G. C. Amberg, et al. "Reactive Oxygen Species Modulate Activity-Dependent AMPA Receptor Transport in C. elegans." The Journal of Neuroscience 40(39): 7405. https://doi.org/10.1523/JNEUROSCI.0902-20.2020
Seo, Y., S. Kingsley, et al. "Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans.." Proceedings of the National Academy of Sciences 115(12): E2791. https://doi.org/10.1073/pnas.1714178115
Tahernia, M., M. Mohammadifar, et al. "Paper-Supported High-Throughput 3D Culturing, Trapping, and Monitoring of Caenorhabditis Elegans." Micromachines 11(1). https://doi.org/10.3390/mi11010099
Williams, A. B., F. Heider, et al. "Restoration of Proteostasis in the Endoplasmic Reticulum Reverses an Inflammation-Like Response to Cytoplasmic DNA in Caenorhabditis elegans." Genetics 212(4): 1259. https://doi.org/10.1534/genetics.119.302422
Martinez, B. A., D. A. Petersen, et al. "Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in C. elegans; Models of Parkinson's Disease." The Journal of Neuroscience 37(46): 11085. https://doi.org/10.1523/JNEUROSCI.1294-17.2017
Pereira, A. G., X. Gracida, et al. "C. elegans aversive olfactory learning generates diverse intergenerational effects." Journal of Neurogenetics 34(3-4): 378-388. https://doi.org/10.1080/01677063.2020.1819265
Rollins, J. A., A. C. Howard, et al. "Assessing Health Span in Caenorhabditis elegans: Lessons From Short-Lived Mutants." The Journals of Gerontology: Series A 72(4): 473-480. https://doi.org/10.1093/gerona/glw248
Soh, M. S., X. Cheng, et al. "Disruption of genes associated with Charcot-Marie-Tooth type 2 lead to common behavioural, cellular and molecular defects in Caenorhabditis elegans." PLOS ONE 15(4): e0231600. https://doi.org/10.1371/journal.pone.0231600
Angstman, N., Frank, H.-G., & Schmitz, C. (2016). Advanced behavioral analyses show that the presence of food causes subtle changes in C. elegans movement. [Original Research]. Frontiers in Behavioral Neuroscience, 10. doi: 10.3389/fnbeh.2016.00060. http://www.frontiersin.org/Journal/Abstract.aspx?s=99&name=behavioral_ne...
Angstman, N. B., Kiessling, M. C., Frank, H.-G., & Schmitz, C. (2015). High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves. Frontiers in Behavioral Neuroscience, 9, 12. doi: 10.3389/fnbeh.2015.00012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319468/
Ao, Y., Zeng, K., Yu, B., Miao, Y., Hung, W., Yu, Z., . . . Gao, S. (2019). An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit. ACS Nano. doi: 10.1021/acsnano.8b09270. https://doi.org/10.1021/acsnano.8b09270
Bai, J., Farias-Pereira, R., Jang, M., Zhang, Y., Lee, S. M., Kim, Y.-S., . . . Kim, K.-H. (2021). Azelaic Acid Promotes Caenorhabditis elegans Longevity at Low Temperature Via an Increase in Fatty Acid Desaturation. Pharmaceutical Research. doi: 10.1007/s11095-020-02975-w. https://doi.org/10.1007/s11095-020-02975-w
Bai, J., Farias-Pereira, R., Zhang, Y., Jang, M., Park, Y., & Kim, K.-H. (2020). C. elegans ACAT regulates lipolysis and its related lifespan in fasting through modulation of the genes in lipolysis and insulin/IGF-1 signaling. BioFactors, n/a(n/a). doi: 10.1002/biof.1666. https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.1666
Barbagallo, B., Philbrook, A., Touroutine, D., Banerjee, N., Oliver, D., Lambert, C. M., & Francis, M. M. (2017). Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit. Development, 144(10), 1807. doi: 10.1242/dev.141911. http://dev.biologists.org/content/144/10/1807.abstract
Barbagallo, B., Philbrook, A., Touroutine, D., Banerjee, N., Oliver, D., Lambert, C. M., & Francis, M. M. (2017). Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit. Development, 144(10), 1807-1819. doi: 10.1242/dev.141911. https://dev.biologists.org/content/develop/144/10/1807.full.pdf
Benbow, S. J., Strovas, T. J., Darvas, M., Saxton, A., & Kraemer, B. C. (2020). Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Human Molecular Genetics. doi: 10.1093/hmg/ddz319. https://doi.org/10.1093/hmg/ddz319
Bhattacharya, R., Touroutine, D., Barbagallo, B., Climer, J., Lambert, C. M., Clark, C. M., . . . Francis, M. M. (2014). A Conserved Dopamine-Cholecystokinin Signaling Pathway Shapes Context–Dependent Caenorhabditis elegans Behavior. PLoS Genet, 10(8), e1004584. doi: 10.1371/journal.pgen.1004584. http://dx.doi.org/10.1371%2Fjournal.pgen.1004584
Brosnan, C. A., Palmer, A. J., & Zuryn, S. (2021). Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nature Communications, 12(1), 2194. doi: 10.1038/s41467-021-22503-7. https://doi.org/10.1038/s41467-021-22503-7
Brugman, K. I., Kato, M., Oh, J. Y., Sternberg, P. W., Maher, S., Wong, W.-R., & Howe, K. (2019). Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. doi: 10.1093/hmg/ddz051. https://doi.org/10.1093/hmg/ddz051
Chen, N., Li, J., Li, D., Yang, Y., & He, D. (2014). Chronic Exposure to Perfluorooctane Sulfonate Induces Behavior Defects and Neurotoxicity through Oxidative Damages, In Vivo and In Vitro PLoS ONE, 9(11), e113453. doi: 10.1371/journal.pone.0113453. http://dx.doi.org/10.1371%2Fjournal.pone.0113453
Choi, M.-K., Liu, H., Wu, T., Yang, W., & Zhang, Y. (2020). NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nature Communications, 11(1), 3467. doi: 10.1038/s41467-020-17218-0. https://doi.org/10.1038/s41467-020-17218-0
Chute, C. D., DiLoreto, E. M., Zhang, Y. K., Reilly, D. K., Rayes, D., Coyle, V. L., . . . Srinivasan, J. (2019). Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nature Communications, 10(1), 3186. doi: 10.1038/s41467-019-11240-7. https://doi.org/10.1038/s41467-019-11240-7
Császár, N. B. M., Angstman, N. B., Milz, S., Sprecher, C. M., Kobel, P., Farhat, M., . . . Schmitz, C. (2015). Radial Shock Wave Devices Generate Cavitation. PLoS ONE, 10(10), e0140541. doi: 10.1371/journal.pone.0140541. http://dx.doi.org/10.1371%2Fjournal.pone.0140541
Farias-Pereira, R., Kim, E., & Park, Y. (2019). Cafestol increases fat oxidation and energy expenditure in Caenorhabditis elegans via DAF-12-dependent pathway. Food Chemistry, 125537. doi: https://doi.org/10.1016/j.foodchem.2019.125537.
Farias-Pereira, R., Oshiro, J., Kim, K.-H., & Park, Y. (2018). Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans. Journal of Functional Foods, 48, 586-593. doi: https://doi.org/10.1016/j.jff.2018.07.049.
Farias-Pereira, R., Park, C.-S., & Park, Y. (2020). Kahweol Reduces Food Intake of Caenorhabditis elegans. Journal of Agricultural and Food Chemistry. doi: 10.1021/acs.jafc.0c03030. https://doi.org/10.1021/acs.jafc.0c03030
Farias-Pereira, R., Savarese, J., Yue, Y., Lee, S.-H., & Park, Y. (2019). Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in Caenorhabditis elegans. Current Research in Food Science. doi: https://doi.org/10.1016/j.crfs.2019.11.002.
Faten A Taki, X. P., Baohong Zhang. (2013). Nicotine Exposure Caused Significant Transgenerational Heritable Behavioral Changes In Caenorhabditis Elegans. EXCLI Journal, 12, 793-806. doi. http://www.researchgate.net/publication/256496981_NICOTINE_EXPOSURE_CAUS...
Flores, B. N., Li, X., Malik, A. M., Martinez, J., Beg, A. A., & Barmada, S. J. (2019). An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Cell Reports, 27(4), 1133-1150.e1138. doi: https://doi.org/10.1016/j.celrep.2019.03.093.
Fouad, A. D., Teng, S., Mark, J. R., Liu, A., Alvarez-Illera, P., Ji, H., . . . Fang-Yen, C. (2018). Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife, 7, e29913. doi: 10.7554/eLife.29913. https://doi.org/10.7554/eLife.29913
Fry, A. L., Laboy, J. T., & Norman, K. R. (2014). VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. [Article]. Nat Commun, 5. doi: 10.1038/ncomms6579. http://dx.doi.org/10.1038/ncomms6579
Gao, S., Guan, S. A., Fouad, A. D., Meng, J., Kawano, T., Huang, Y.-C., . . . Lu, Y. (2018). Excitatory motor neurons are local oscillators for backward locomotion. eLife, 7. doi. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780044/
Gong, J., Yuan, Y., Ward, A., Kang, L., Zhang, B., Wu, Z., . . . Xu, X. Z. S. (2016). The C. elegans Taste Receptor Homolog LITE-1 Is a Photoreceptor. Cell, 167(5), 1252-1263.e1210. doi: http://dx.doi.org/10.1016/j.cell.2016.10.053.
Goya, M. E., Xue, F., Sampedro-Torres-Quevedo, C., Arnaouteli, S., Riquelme-Dominguez, L., Romanowski, A., . . . Doitsidou, M. (2020). Probiotic Bacillus subtilis Protects against α-Synuclein Aggregation in C. elegans. Cell Reports, 30(2), 367-380.e367. doi: https://doi.org/10.1016/j.celrep.2019.12.078.
Han, B., Bellemer, A., & Koelle, M. R. (2015). An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans. Genetics, 199(4), 1159-1172. doi: 10.1534/genetics.114.173963. http://www.genetics.org/content/199/4/1159.abstract
Hardaway, J. A., Sturgeon, S. M., Snarrenberg, C. L., Li, Z., Xu, X. S., Bermingham, D. P., . . . Carvelli, L. (2015). Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling. The Journal of Neuroscience, 35(25), 9409-9423. doi. http://www.jneurosci.org/content/35/25/9409.short
Hill, T. (2017). Ephrin Receptors, AIY Interneuron Physiology, and Behavior. doi. http://digitalcommons.kennesaw.edu/integrbiol_etd/22/
Hsueh, Y.-P., Gronquist, M. R., Schwarz, E. M., Nath, R. D., Lee, C.-H., Gharib, S., . . . Sternberg, P. W. (2017). Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. [JOUR]. eLife, 6, e20023. doi: 10.7554/eLife.20023. https://dx.doi.org/10.7554/eLife.20023
Kosmaczewski, S. G., Han, S. M., Han, B., Irving Meyer, B., Baig, H. S., Athar, W., . . . Hammarlund, M. (2015). RNA ligation in neurons by RtcB inhibits axon regeneration. Proceedings of the National Academy of Sciences, 112(27), 8451-8456. doi: 10.1073/pnas.1502948112. http://www.pnas.org/content/112/27/8451.abstract
Kow, R. L., Strovas, T. J., McMillan, P. J., Jacobi, A. M., Behlke, M. A., Saxton, A. D., . . . Kraemer, B. C. (2021). Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes. Neurobiology of Disease, 147, 105148. doi: https://doi.org/10.1016/j.nbd.2020.105148.
Leung, H.-H., Liang, C., Marcotte, D., & McEachern, H. (2015). Effect of salinity on the locomotion of Caenorhabditis elegans. The Expedition, 4. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/186394
Li, G., Gong, J., Liu, J., Liu, J., Li, H., Hsu, A.-L., . . . Xu, X. Z. S. (2019). Genetic and pharmacological interventions in the aging motor nervous system slow motor aging and extend life span in C. elegans. Science Advances, 5(1), eaau5041. doi: 10.1126/sciadv.aau5041. http://advances.sciencemag.org/content/5/1/eaau5041.abstract
Li, J., Li, D., Yang, Y., Xu, T., Li, P., & He, D. (2015). Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. Journal of Applied Toxicology, n/a-n/a. doi: 10.1002/jat.3144. http://dx.doi.org/10.1002/jat.3144
Liu, H., Yang, W., Wu, T., Duan, F., Soucy, E., Jin, X., & Zhang, Y. (2018). Cholinergic Sensorimotor Integration Regulates Olfactory Steering. Neuron. doi: https://doi.org/10.1016/j.neuron.2017.12.003. https://www.sciencedirect.com/science/article/pii/S0896627317311261
Lyu, S., Doroodchi, A., Xing, H., Sheng, Y., DeAndrade, M. P., Yang, Y., . . . Li, Y. (2020). BTBD9 and dopaminergic dysfunction in the pathogenesis of restless legs syndrome. Brain Structure and Function. doi: 10.1007/s00429-020-02090-x. https://doi.org/10.1007/s00429-020-02090-x
Mah, M. W., Mitha, I., Trinh, A., & Wu, D. (2017). Effect of NaCl concentration on the mid-body movement of Caenorhabditis elegans. The Expedition, 6. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/189083
Malvar, S., Gontijo, R., Carmo, B., & Cunha, F. (2017). On the kinematics-wave motion of living particles in suspension. Biomicrofluidics, 11(4), 044112. doi. http://aip.scitation.org/doi/abs/10.1063/1.4997715
Martin, J., Oka, Y., Pabla, P., & Qubain, O. (2017). The effect of temperature on the locomotion of Caenorhabditis elegans. The Expedition, 6. doi. http://ojs.library.ubc.ca/index.php/expedition/article/view/189099
Martinez, B. A., Kim, H., Ray, A., Caldwell, G. A., & Caldwell, K. A. (2015). A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans. [Original Article]. Cell Death Dis, 6, e1908. doi: 10.1038/cddis.2015.270. http://dx.doi.org/10.1038/cddis.2015.270
Meneely, P. M., Dahlberg, C. L., & Rose, J. K. (2019). Working with Worms: Caenorhabditis elegans as a Model Organism. Current Protocols Essential Laboratory Techniques, 19(1), e35. doi: 10.1002/cpet.35. https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpet.35
Morales-Zavala, F., Arriagada, H., Hassan, N., Velasco, C., Riveros, A., Álvarez, A. R., . . . Kogan, M. J. (2017). Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Nanomedicine: Nanotechnology, Biology and Medicine. doi: https://doi.org/10.1016/j.nano.2017.06.013. http://www.sciencedirect.com/science/article/pii/S1549963417301211
Nagarajan, A., Ning, Y., Reisner, K., Buraei, Z., Larsen, J. P., Hobert, O., & Doitsidou, M. (2014). Progressive Degeneration of Dopaminergic Neurons through TRP Channel-Induced Cell Death. The Journal of Neuroscience, 34(17), 5738-5746. doi. http://www.jneurosci.org/content/34/17/5738.short
O’Donnell, M. P., Chao, P.-H., Kammenga, J. E., & Sengupta, P. (2018). Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS genetics, 14(2), e1007213. doi. https://www.ncbi.nlm.nih.gov/pubmed/29415022
Polli, J. R., Dobbins, D. L., Kobet, R. A., Farwell, M. A., Zhang, B., Lee, M.-H., & Pan, X. (2014). Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure. NeuroToxicology, (0). doi: http://dx.doi.org/10.1016/j.neuro.2014.12.005.
Raj, V., Nair, A., & Thekkuveettil, A. (2021). Manganese exposure during early larval stages of C. elegans causes learning disability in the adult stage. Biochemical and Biophysical Research Communications, 568, 89-94. doi: https://doi.org/10.1016/j.bbrc.2021.06.073.
Ramachandran, S., Banerjee, N., Bhattacharya, R., Touroutine, D., Lambert, C. M., Schoofs, L., . . . Francis, M. M. (2020). A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. bioRxiv, 2020.2004.2027.064550. doi: 10.1101/2020.04.27.064550. https://www.biorxiv.org/content/biorxiv/early/2020/04/28/2020.04.27.0645...
Ramachandran, S., Banerjee, N., Bhattacharya, R., Touroutine, D., Lambert, C. M., Schoofs, L., . . . Francis, M. M. (2020). A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. bioRxiv, 2020.2004.2027.064550. doi: 10.1101/2020.04.27.064550. http://biorxiv.org/content/early/2020/04/28/2020.04.27.064550.abstract
Rendon-Nava, D., Mendoza-Espinosa, D., Negron-Silva, G. E., Valdez-Calderon, A., Martinez-Torres, A., Tellez-Arreola, J. L., & Gonzalez-Montiel, S. (2017). Chrysin functionalized NHC-Au(I) complexes: Synthesis, characterization and effects on the nematode Caenorhabditis elegans. [10.1039/C6NJ03299K]. New Journal of Chemistry. doi: 10.1039/c6nj03299k. http://dx.doi.org/10.1039/C6NJ03299K
Rochester, J. D., Tanner, P. C., Sharp, C. S., Andralojc, K. M., & Updike, D. L. (2017). PQN-75 is expressed in the pharyngeal gland cells of Caenorhabditis elegans and is dispensable for germline development. [10.1242/bio.027987]. Biology Open, 6(9), 1355. doi. http://bio.biologists.org/content/6/9/1355.abstract
Roussel, N., Sprenger, J., Tappan, S. J., & Glaser, J. R. (2014). Robust tracking and quantification of C. elegans body shape and locomotion through coiling, entanglement, and omega bends. Worm, 3(4), e982437. doi: 10.4161/21624054.2014.982437. http://dx.doi.org/10.4161/21624054.2014.982437
Sakamoto, K., Soh, Z., Suzuki, M., Iino, Y., & Tsuji, T. (2021). Forward and backward locomotion patterns in C. elegans generated by a connectome-based model simulation. Scientific Reports, 11(1), 13737. doi: 10.1038/s41598-021-92690-2. https://doi.org/10.1038/s41598-021-92690-2
Salzberg, Y., Pechuk, V., Gat, A., Setty, H., Sela, S., & Oren-Suissa, M. (2020). Synaptic Protein Degradation Controls Sexually Dimorphic Circuits through Regulation of DCC/UNC-40. Current Biology. doi: https://doi.org/10.1016/j.cub.2020.08.002.
Shen, P., Hsieh, T.-H., Yue, Y., Sun, Q., Clark, J. M., & Park, Y. (2017). Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food and Chemical Toxicology, 101, 149-156. doi: http://dx.doi.org/10.1016/j.fct.2017.01.015.
Shen, P., Kershaw, J. C., Yue, Y., Wang, O., Kim, K.-H., McClements, D. J., & Park, Y. (2018). Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chemistry, 249, 193-201. doi: https://doi.org/10.1016/j.foodchem.2018.01.017.
Shen, P., Yue, Y., Kim, K.-H., & Park, Y. (2017). Piceatannol Reduces Fat Accumulation in Caenorhabditis elegans. Journal of Medicinal Food. doi: 10.1089/jmf.2016.0179. https://doi.org/10.1089/jmf.2016.0179
Shen, P., Yue, Y., Sun, Q., Kasireddy, N., Kim, K.-H., & Park, Y. (2017). Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. BioFactors, n/a-n/a. doi: 10.1002/biof.1346. http://dx.doi.org/10.1002/biof.1346
Shepherd, E., Greiner, S. P., & Bowdridge, S. (2020). Characterization of ovine monocyte activity when cultured with Haemonchus contortus larvae in vitro. Parasite Immunology, n/a(n/a), e12773. doi: 10.1111/pim.12773. https://onlinelibrary.wiley.com/doi/abs/10.1111/pim.12773
Shuai, X., Bailey-Brock, J. H., & Lin, D. T. (2014). Spatio-temporal changes in trophic categories of infaunal polychaetes near the four wastewater ocean outfalls on Oahu, Hawaii. Water Research, (0). doi: http://dx.doi.org/10.1016/j.watres.2014.03.058.
Sun, Q., Yue, Y., Shen, P., Yang, J. J., & Park, Y. (2016). Cranberry Product Decreases Fat Accumulation in Caenorhabditis elegans. Journal of Medicinal Food. doi: 10.1089/jmf.2015.0133. http://dx.doi.org/10.1089/jmf.2015.0133
Sutphin, G. L., Backer, G., Sheehan, S., Bean, S., Corban, C., Liu, T., . . . Aging Research in Genomic Epidemiology Consortium Gene Expression Working, G. (2017). Caenorhabditis elegans orthologs of human genes differentially expressed with age are enriched for determinants of longevity. Aging Cell, n/a-n/a. doi: 10.1111/acel.12595. http://dx.doi.org/10.1111/acel.12595
Téllez-Arreola, J., Valdez-Calderón, A., González-Montiel, S., Martinez-Torres, A., & Hernandez, A. (2019). Some effects of a chrysin bromide-derivative on GABA-A receptors and on Caenorhabditis elegans. Europe PMC. doi. https://europepmc.org/fulltext/ctx/m1023
Vozdek, R., Long, Y., & Ma, D. K. (2018). The receptor tyrosine kinase HIR-1 coordinates HIF-independent responses to hypoxia and extracellular matrix injury. [10.1126/scisignal.aat0138]. Science Signaling, 11(550). doi. http://stke.sciencemag.org/content/11/550/eaat0138.abstract
Weeks, J. C., Roberts, W. M., Leasure, C., Suzuki, B. M., Robinson, K. J., Currey, H., . . . Liachko, N. F. (2018). Sertraline, Paroxetine, and Chlorpromazine Are Rapidly Acting Anthelmintic Drugs Capable of Clinical Repurposing. Scientific Reports, 8(1), 975. doi: 10.1038/s41598-017-18457-w. https://doi.org/10.1038/s41598-017-18457-w
Woldemariam, S., Nagpal, J., Hill, T., Li, J., Schneider, M. W., Shankar, R., . . . Etoile, N. (2019). Using a Robust and Sensitive GFP-Based cGMP Sensor for Real Time Imaging in Intact Caenorhabditis elegans. Genetics, genetics.302392.302019. doi: 10.1534/genetics.119.302392. http://www.genetics.org/content/early/2019/07/22/genetics.119.302392.abs...
Wu, X., Al-Amin, M., Zhao, C., An, F., Wang, Y., Huang, Q., . . . Song, H. (2020). Catechinic acid, a natural polyphenol compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. [10.1039/D0FO00694G]. Food & Function. doi: 10.1039/d0fo00694g. http://dx.doi.org/10.1039/D0FO00694G
Wu, X., Mohammad, A., Zhao, C., An, F., Wang, Y., Huang, Q., . . . Song, H. (2020). Catechinic acid, a natural polyphenols compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. [10.1039/D0FO00694G]. Food & Function. doi: 10.1039/d0fo00694g. http://dx.doi.org/10.1039/D0FO00694G
Xiao, R., Chun, L., Ronan, Elizabeth A., Friedman, David I., Liu, J., & Xu, X. Z. S. (2015). RNAi Interrogation of Dietary Modulation of Development, Metabolism, Behavior, and Aging in C. elegans. Cell Reports, (0). doi: http://dx.doi.org/10.1016/j.celrep.2015.04.024.
Xu, T., Li, P., Wu, S., Lei, L., & He, D. (2017). Tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloropropyl) phosphate (TCPP) induce locomotor deficits and dopaminergic degeneration in Caenorhabditis elegans. [10.1039/C6TX00306K]. Toxicology Research. doi: 10.1039/c6tx00306k. http://dx.doi.org/10.1039/C6TX00306K
Xu, T., Zhang, M., Hu, J., Li, Z., Wu, T., Bao, J., . . . He, D. (2017). Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. Chemosphere, 181, 55-62. doi: https://doi.org/10.1016/j.chemosphere.2017.04.068.
Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695.
Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 145, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695.
Yue, Y., Li, S., Qian, Z., Pereira, R. F., Lee, J., Doherty, J. J., . . . Park, Y. (2020). Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 145, 111695. doi: https://doi.org/10.1016/j.fct.2020.111695.
Yue, Y., Shen, P., Chang, A. L., Qi, W., Kim, K.-H., Kim, D., & Park, Y. (2019). trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans. Food & Function. doi. https://pubs.rsc.org/en/content/articlelanding/2019/fo/c9fo00778d#!divAb...
Yue, Y., Shen, P., Xu, Y., & Park, Y. (2018). p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. Journal of the Science of Food and Agriculture, 0(ja). doi: doi:10.1002/jsfa.9288. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.9288
Yue, Y., Wang, J., Shen, P., Kim, K.-H., & Park, Y. (2021). Methylglyoxal influences development of Caenorhabditis elegans via lin-41-dependent pathway. Food and Chemical Toxicology, 152, 112238. doi: https://doi.org/10.1016/j.fct.2021.112238. https://www.sciencedirect.com/science/article/pii/S0278691521002714
Yue, Y., Wang, J., Shen, P., Kim, K.-H., & Park, Y. (2021). Methylglyoxal influences development of Caenorhabditis elegans via lin-41-dependent pathway. Food and Chemical Toxicology, 152, 112238. doi: https://doi.org/10.1016/j.fct.2021.112238. https://www.sciencedirect.com/science/article/pii/S0278691521002714
Zhang, T., Xie, L., Liu, R., Chang, M., Jin, Q., & Wang, X. (2021). Differentiated 4,4-dimethylsterols from vegetable oils reduce fat deposition dependent on NHR-49/SCD pathway in Caenorhabditis elegans. [10.1039/D1FO00669J]. Food & Function. doi: 10.1039/d1fo00669j. http://dx.doi.org/10.1039/D1FO00669J